ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ НЕТРАДИЦИОННОГО РАСТИТЕЛЬНОГО СЫРЬЯ ПРИ ПРОИЗВОДСТВЕ ФУНКЦИОНАЛЬНЫХ ПРОДУКТОВ ПИТАНИЯ

Брыксина Кристина Вячеславовна

старший преподаватель

kristinaparusova91@gmail.com

Перфилова Ольга Викторовна

доктор технических наук, профессор

perfolgav@mail.ru

Мичуринский государственный аграрный университет

Мичуринск, Россия

Аннотация. Проведена органолептическая оценка высушенных плодов и порошка из облепихи. Рассмотрена технология получения фруктового порошка, изучен его химический состав и биологическая ценность.

Ключевые слова: облепиха, химический состав, эксперимент, высушенные плоды, порошок, витамины, минеральные вещества.

В нашей стране в последние годы наблюдается тенденция к устойчивому росту числа заболеваний, вызванных различными токсическими и онкогенными воздействиями окружающей среды. Здоровье каждого человека и нации в значительной мере определяется типичным рационом питания. Как показывают результаты исследований, в России, в структуре потребления пищевых продуктов наблюдаются отклонения от современных принципов здорового питания в сторону дефицита микронутриентов, что отрицательно сказывается на здоровье населения [4, 5, 14-16].

Использование растительных ингредиентов в технологии хлебобулочных изделий является перспективным направлением. Они позволяют корректировать свойства применяемого сырья, влиять на технологический продуктам лечебное, процесс производства И придавать ГОТОВЫМ профилактическое и функциональное назначение [12].

Наиболее эффективным способом улучшения органолептических и физико-химических показателей является создание функциональных продуктов питания и введение в рецептуру данных продуктов натуральных ингредиентов растительного происхождения [3, 7, 9, 11-13, 17]. Для проведения эксперимента были получены высушенные плоды облепихи, урожая 2020 года.*

Облепиха - перспективное сырьё для производства функциональных хлебобулочных изделий. Использование растительных ингредиентов в технологии хлебобулочных изделий является перспективным направлением. Они позволяют корректировать свойства применяемого сырья, влиять на технологический процесс производства и придавать готовым продуктам лечебное, профилактическое и функциональное назначение.

Основной проблемой использования местного фруктового сырья является их сезонность. Из-за большого количества влаги плоды облепихи являются скоропортящимися. Решением данной проблемы является создание запасов в виде порошка. Порошок хорошо хранится и его удобно вносить в изделия [1, 6, 8, 10].

Производство порошка из облепихи включало следующие этапы:

- 1. приемка;
- 2. инспекция и сортировка по качеству: калибровка, удаление незрелый плодов, удаление всех примесей, поврежденных вредителями и порченных плодов;
- 3. промывка отсортированных, полноценных плодов, с целью удаления загрязнений;
- 4. сушка в инфракрасной сушилке целиком, без отделения косточек до массовой доли сухих веществ 90-92 % при температуре воздуха в сушильной камере 70 °C в течение 5 часов;
- 5. измельчение высушенного сырья в дробилках ударного действия, либо на микромельницах, пропускание продукта помола через сито;
- 6. расфасовка в герметичные пакеты из ламинированной бумаги в высушенном виде;
- 7. хранение при температуре от 0 до 25 °C, относительной влажности воздуха не более 75 % и без резких колебаний температуры.

Высушенные плоды облепихи представляют собой плоды с морщинистой, блестящей поверхностью. Внутри плода находится семечка темно-коричневого цвета продолговатой формы. Облепиховый порошок представляет собой сыпучую массу без комков и заметных примесей от оранжево-коричневого до коричневого цвета в зависимости от сорта с натуральным ароматом ягоды. На вкус плоды кисловатые с характерным вкусом облепихи.

Органолептическая оценка высушенных плодов и порошка из облепихи была проведена по внешнему виду, цвету, вкусу, запаху и консистенции (таблица 1).

Органолептическая оценка используемого сырья

Показатель	Наименование	
показатель	Высушенные плоды облепихи	Порошок из облепихи
Внешний вид	Плоды продолговато-яйцевидные,	Порошкообразный,
	высотой – 7-10 мм, диаметром – 3-	однородный, без
	6 мм, морщинистые. Внутри	вредителей, посторонних
	высушенного плода находится	примесей, слежавшихся
	семечка темно-коричневого цвета	комочков
	продолговатой формы	
Цвет	От оранжево-коричневого до	От оранжево-коричневого
	коричневого	до коричневого с темно-
		коричневыми
		вкраплениями
Вкус	Вкус кисловатый, свойственный облепихе	
Запах	Специфический аромат облепихи	
Консистенция	Плотная	Рассыпчатая, на ощупь
		маслянистая

Определение химического состава порошка было обусловлено определением белков, жиров, пищевых волокон, золы, витаминов С и Е, β -каротина (таблица 2).

Показатель	Порошок из облепихи	
Массовая доля сухих веществ, %	90,5	
Массовая доля влаги, %	9,5	
Белки, г	4,8	
Жиры, г	22,8	
Углеводы, г	12,9	
Пищевые волокна, г	4,2	
Витамины:		
Витамин С, мг	22,8	
В-каротин, мг	15,8	
Минеральные вещества:		
Магний, мг	35,9	
Калий, мг	227,8	
Кальций, мг	33,9	

Исследование химического состава порошка из облепихи показало, что выбранный нами функциональный ингредиент характеризуется высоким содержанием биологически активных компонентов. Каротин, содержащийся в порошке в большом количестве, выполняет роль антиоксиданта, который способен очистить организм от вредных свободных радикалов, которые не участвуют в биологических процессах. Он связывает и выводит радикалы, укрепляет иммунитет, значительно снижает риск заражения инфекционными и бактериальными заболеваниями. Витамин С, содержащийся в порошке, играет важную роль в регуляции окислительно-восстановительных процессов, участвует в синтезе коллагена и проколлагена, обмене фолиевой кислоты и железа. Минеральные вещества, входящие в состав порошка, вместе с водой обеспечивают постоянство осмотического давления, кислотно-щелочного баланса, процессов всасывания, секреции, кроветворения. Микроэлементы действуют в организме путем вхождения в той или иной форме и в незначительных количествах в структуру биологически активных веществ, главным образом ферментов (энзимов).

*- Работа выполнена с использованием научного оборудования ЦКП Мичуринского ГАУ «Селекция сельскохозяйственных культур и технологии производства, хранения и переработки продуктов питания функционального и лечебно-профилактического назначения».

Список литературы:

- 1. Арсеньева, Т.П. Основные вещества для обогащения продуктов питания / Т.П. Арсеньева, И.В. Баранова // Пищевая промышленность. 2007. $Noldsymbol{0}$ 1. С. 6-7.
- 2. Блинникова, О.М. Проектирование поликомпонентных пищевых продуктов с заданными свойствами на основе ягодного сырья центральночерноземного региона / О.М. Блинникова, Л.Г. Елисеева // Технологии пищевой и перерабатывающей промышленности АПК продукты здорового питания. 2017. № 5 (19). С. 81-88.

- 3. Винницкая, В.Ф. Исследования функциональных свойств овощей, фруктов, ягод, листьев и трав и создание функциональных продуктов питания нового поколения / В.Ф. Винницкая, Е.И. Попова, А.А. Евдокимов [и др.] // Вестник Мичуринского аграрного университета. 2014. № 5. С. 63-68.
- 4. Винницкая, В.Ф. Разработка и создание функциональных продуктов из растительного сырья в Мичуринском государственном аграрном университете / В.Ф. Винницкая, Д.В. Акишин, О.В. Перфилова [и др.] // Вестник Мичуринского государственного аграрного университета. 2013. № 6. С. 83-86.
- 5. Винницкая, В.Ф. Разработка технологических рекомендаций по организации производства функциональных пищевых продуктов из местного фруктового и овощного сырья / В.Ф. Винницкая, Е.И. Попова, Д.В. Акишин [и др.] // Вестник Мичуринского аграрного университета. 2018. № 1. С. 101-107.
- 6. Грачева, Н.А. Особенности технологии производства творожного десерта /Н.А. Грачева, Е.Н. Третьякова, Д.Н. Порошина, Р.А. Ушакова //Сб.: Пища. Экология. Качество: труды XIV международной научно-практической конференции. 2017. С. 38175-178.
- 7. Дроздова, Т.М. Физиология питания / Т.М. Дроздова, П.Е. Влощинский, В.М. Позняковский. Новосибирск.: Сиб. Унив. Изд-во, 2007. 352 с.
- 8. Дудкин, М.С. Новые продукты питания / М.С. Дудкин, Л.Ф. Щелкунов. М.: Наука, 2008. 304 с.
- Дусенко, С.В. Проблемы питания в мегаполисе / С.В. Дусенко,
 О.В. Полянская // Пищевая промышленность. 2012. № 2. С. 36-39.
- 10. Кацерикова, Н.В. Технология продуктов функционального питания / Н.В. Кацерикова; учебное пособие. Кемерово, 2004. 146 с.
- 11. Новикова, И.М. Основные тенденции использования плодовоягодного сырья в кондитерском производстве / И.М. Новикова, О.М. Блинникова, Л.Г. Елисеева // Сб.: Современные проблемы техники и

технологии пищевых производств: материалы XX Международной научнопрактической конференции, 2019. - С. 255-257.

- 12. Парусова, К.В. Способ производства хлеба ржано-пшеничного с функциональными добавками для здорового питания / К.В. Парусова // Вестник Мичуринского государственного аграрного университета. 2016. № 4. С. 70-74.
- 13. Разработка нового ассортимента полуфабрикатов и продуктов питания из вторичного фруктового сырья / О.В. Перфилова, В.А. Бабушкин, Г.О. Магомедов [и др.] // Сб.: Инновационные и ресурсосберегающие технологии продуктов питания: материалы I Национальной научнотехнической конференции с международным участием, электронный ресурс, 2018.
- 14. Третьякова, Е.Н. Новые технологические решения производства кисломолочных напитков профилактического назначения /Е.Н. Третьякова, Н.А. Нечепорук, А.Г. Нечепорук //Сб.: Ресурсосберегающие экологически безопасные технологии хранения и переработки сельскохозяйственной продукции: материалы Международной научно-практической конференции, посвященной 75-летию Курганской области. Под редакцией С.Ф. Сухановой. 2018. С. 385-388.
- 15. Третьякова, Е.Н. Производство продуктов питания нового поколения /Е.Н. Третьякова, А.Г. Матвеев, А.С. Сиротин //Сб.: Научное обеспечение инновационного развития агропромышленного комплекса регионов РФ: материалы Международной научно-практической конференции, 2018. С. 938-942.
- 16. Dasgupta, A. Antioxidants in Food, Vitamins and Supplements: Prevention and Treatment of Disease / A. Dasgupta, K. Klein. Elsevier, 2014. 359 p.
- 17. Quality of jelly marmalade from fruit and vegetable semi-finished products / O.V. Perfilova, V.A. Babushkin, G.O. Magomedov, M.G. Magomedov //

International Journal of Pharmaceutical Research. - 2018. - T. 10. - № 4. - C. 721-724.

UDC 664.8.047

PROSPECTS FOR USING UNCONVENTIONAL VEGETABLE RAW MATERIALS IN PRODUCTION OF FUNCTIONAL FOOD PRODUCTS

Bryksina Kristina Vyacheslavovna

Senior Lecturer

kristinaparusova91@gmail.com

Perfilova Olga Viktorovna

Doctor of Technical Sciences, Professor

perfolgav@mail.ru

Michurinsk State Agrarian University

Michurinsk, Russia

Annotation. Organoleptic evaluation of dried fruits and sea buckthorn powder was carried out. The technology of obtaining fruit powder is considered, its chemical composition and biological value are studied.

Key words: sea buckthorn, chemical composition, experiment, dried fruits, powder, vitamins, minerals.