РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ УСТРОЙСТВА ДЛЯ НАНЕСЕНИЯ АНТИКОРРОЗИОННЫХ ПОКРЫТИЙ НА КУЗОВНЫХ ЭЛЕМЕНТОВ ТРАНСПОРТНО-ТЕХНОЛОГИЧЕСКИХ МАШИН

Григорьев Александр Викторович

магистрант

Дьячков Сергей Владимирович

кандидат технических наук, доцент

dsv13.06@mail.ru

Соловьёв Сергей Владимирович

доктор сельскохозяйственных наук, доцент

sergsol6800@yandex.ru

Абросимов Александр Геннадьевич

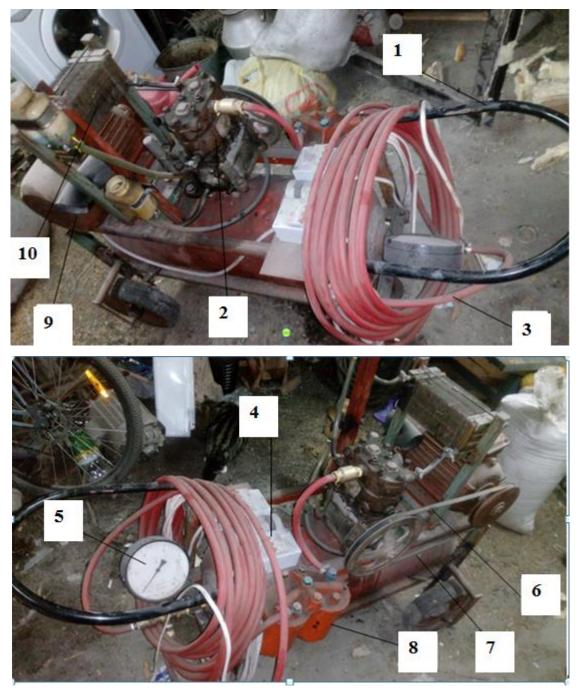
кандидат технических наук, доцент Мичуринский государственный аграрный университет Мичуринск, Россия

Аннотация. В статье рассмотрены результаты экспериментальных исследований рабочего органа устройства для антикоррозионной обработки полостей транспортно-технологических машин. В результате скрытых проведенных экспериментальных исследований авторами получены объемного зависимости определения расходов ДЛЯ массового И антикоррозионной жидкости.

Ключевые слова: транспортно-технологические машины, антикоррозионная обработка, форсунка, удельный вес моющего потока.

Кузовные элементы транспортно-технологических машин в процессе их эксплуатации подвергаются воздействию различных агрессивных сред (песок, гравий, пескосоляная смесь в зимнее время года, различные минеральные реагенты (удобрения, пестициды)). В результате этого происходит повреждение защитных материалов металлических поверхностей кузовных элементов, что способствует развитию коррозионных процессов.

Согласно результатам многочисленных исследований затраты на поддержание техники в работоспособном состоянии составляют 12...15% в себестоимости продукции [1, 2].


Для того, чтобы существенно снизить данный вид затрат необходимо проводить защиту кузовных элементов транспортно-технологических машин от коррозии [1, 3, 4]. В настоящее время существует достаточное разнообразие различных антикоррозионных материалов и компонентов, от эффективных дорогостоящих, до менее эффективных и недорогих [3, 5, 6].

Средства механизации для приготовления и нанесения антигравийных составов кузовные элементы транспортно-технологических на машин представлены в основном в виде патентов или единичных экземпляров, которые широкого востребования Применяемые не нашли на рынке. ДЛЯ антикоррозионной обработки средства в своем большинстве представлены в виде аэрозольных баллончиков [1, 3, 4]. При нанесении антикора баллончиком с позволит равномерно распределить консервант аэрозолем не всей элементов транспортно-технологических поверхности кузовных толщина слоя в разных участках поверхности будет неодинаковой, что снизит эффективность обработки [7, 8].

Поэтому исследование технологических процессов нанесения антикоррозионных составов на кузовные элементы транспортнотехнологических машин, является актуальным.

Для нанесения антикоррозионных составов на кузовные элементы транспортно-технологических машин нами создана установка (рисунок 1), состоящая из рамы с ручкой 1, компрессора 2, пульта управления 4, который

позволяет производить работу разработанной установки от напряжения 220 и 380 вольт. Для накопления сжатого воздуха используется баллон 7, на выходе из которого установлен манометр 5 с предохранительным клапаном.

1- рама с ручкой; 2 – компрессор; 3 – шланг высокого давления; 4 – пульт управления; 5 – манометр; 6 – ременная передача; 7- баллон; 8 – осущители воздуха; 9- электродвигатель; 10 – радиатор.

 $Pucyнo\kappa\ 1$ — Устройство для нанесения антикоррозионных составов на кузовные элементы транспортнотехнологических машин

Привод компрессора осуществляется от электродвигателя 9. Для осушения воздуха используется осушители 8, а для охлаждения компрессора — радиатор

10. В качестве источника питания данной установки может служить бытовой бензиновый или дизельный генератор.

Антикоррозионный состав наносится на рабочие органы транспортнотехнологических машин с помощью распыливающего пистолета. Данный пистолет изготовлен из расширительного бачка отопления закрытого типа, содержит рукоятку, трубки для подачи воздуха из ресивера и антикоррозионного состава, который заливается в бачок. На конце трубки расположен распыливающий наконечник. Емкость бачка 5 литров.

Применение данного устройства позволит проводить качественную антикоррозионную обработку рабочих органов транспортно-технологических машин при подготовке их к длительному хранению.

Результаты экспериментальных исследований процесса нанесения антикоррозионной смеси на поверхности транспортно-технологических машин представлены на рисунках 2-4.

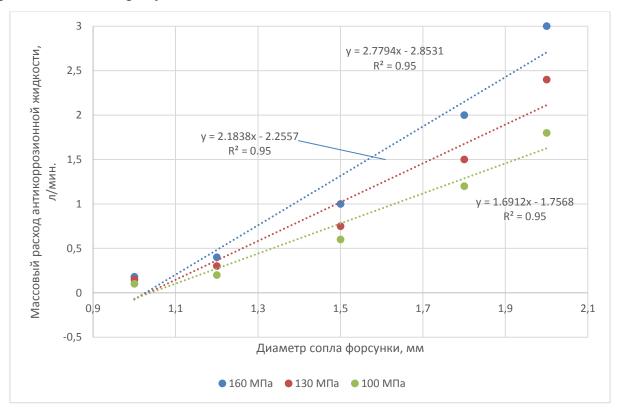


Рисунок 2 - Зависимость массового расхода антикоррозионной смеси от диаметра сопла форсунки при температуре 90°С ($η_x$ =3,2 Πa·c)

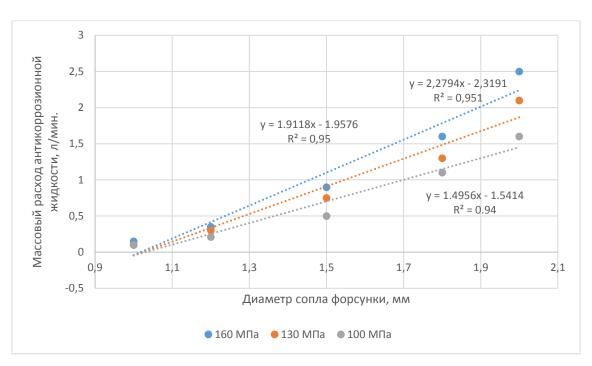


Рисунок 3 - Зависимость массового расхода антикоррозионной смеси от диаметра сопла форсунки при температуре 80°С (η_ж=3,8 Π a·c)

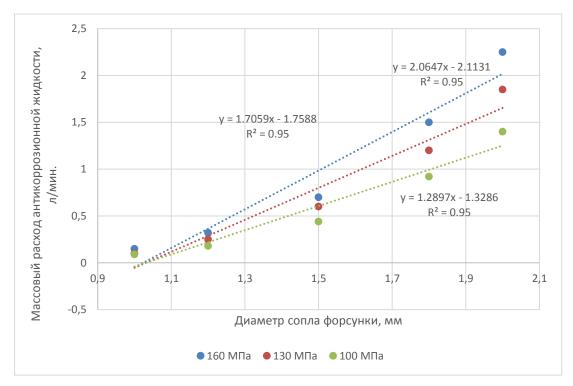


Рисунок 4 - Зависимость массового расхода антикоррозионной смеси от диаметра сопла форсунки при температуре 70°С ($η_x$ =4,2 Πа·с)

Зависимости массового расхода от диаметра сопла распылителя показывают, что с увеличением диаметра сопла и давления расход увеличивается, причем в допустимых пределах погрешности опыта зависимости

можно описать линейной функцией. При снижении температуры антикоррозионной жидкости меняется ее динамическая вязкость в сторону увеличения, массовый расход при этом уменьшается. Для формирования рекомендуемой толщины слоя в 0,35 мм форсунками с диаметром отверстия от 1,2 до 1,8 мм можно рекомендовать давление от 160 до 100 МПа, так как полученные значения расхода согласуются с известными производственными показателями.

Зависимость массового расхода антикоррозионной смеси от динамической вязкости на рисунке 5 подтверждает теоретические исследования.

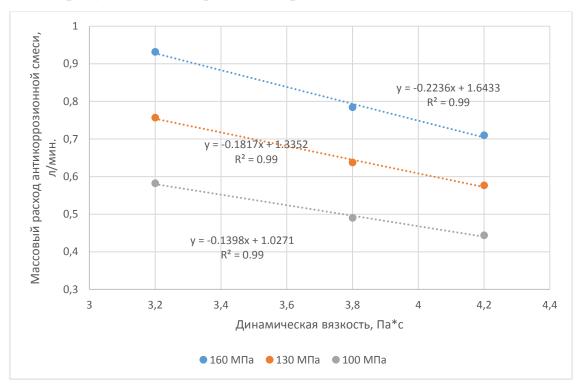


Рисунок 5 - Зависимость массового расхода антикоррозионной смеси от динамической вязкости

В заключении следует отметить, что для нанесения рекомендуемой толщины антикоррозионного слоя в 0,35 мм необходимо согласовать следующие режимы и параметры:

- диаметр сопла распыливающего устройства;
- давление устройства для распыления;
- температуру нагрева антикоррозионной смеси.

Список литературы:

- 1. Износ и коррозия сельскохозяйственных машин / М.М. Севернев, Н.Н. Подлекарев, В.Ш. Сохадзе, В.О. Китиков. Минск: Беларуская навука, 2011. 333 с.
- 2. Analysis of the uniformity of the distribution of herbicides in the intercustal zone with a bar with a deviating section / K.A. Manaenkov, V.V. Khatuntsev, A.S. Gordeev, A.A. Korotkov, V.I. Gorshenin // В сборнике: IOP Conference Series: Materials Science and Engineering. Krasnoyarsk Science and Technology City Hall of the Russian Union of Scientific and Engineering Associations. Krasnoyarsk, Russia. 2020. C. 32008
- 3. Манаенков, К.А. Совершенствование обработки почвы в приствольных полосах интенсивных садов / К.А. Манаенков, М.С. Колдин, Ж.А. Арькова // Технологии пищевой и перерабатывающей промышленности АПК продукты здорового питания. 2017. \mathbb{N} 3 (17). С. 28-34.
- 4. Горшенин, В.И. Машина для бесконтактной мойки дорожных ограждений / В.И. Горшенин, В.Ю. Ланцев, С.В. Дьячков, С.В. Соловьёв // Наука и образование— 2019. T. 2. № 2. C. 24.
- 5. Бросалин, В.Г. Исследование садовой гербицидной штанги для обработки приствольных полос / В.Г. Бросалин, А.И. Завражнов, К.А. Манаенков // Механизация и электрификация сельского хозяйства. − 2009. − № 10. − С. 8-11
- 6. Дьячков, С.В. Совершенствование технологического процесса и технических средств для очистки дорожных ограждений от загрязнений / С.В. Дьячков, С.В. Соловьёв, А.А. Урюпин // Наука и образование 2019. Т. 2. № 2. С. 209.
- 7. Консервация машин для разбрасывания пескосоляной смеси / В.И. Горшенин, В.Ю. Ланцев, С.В. Соловьёв, [и др.] //Наука и Образование. 2019. Т. 2. № 1. С. 45.
- 8. Теоретические предпосылки к исследованию устройства для нанесения антигравийных покрытий на кузовные элементы транспортнотехнологических машин / А.А Кондрашин, С.В. Дьячков, С.В. Соловьев, А.А. Бахарев, А.Г. Абросимов // Наука и образование. 2020. Т.3. №2. С. 189

RESULTS OF EXPERIMENTAL STUDIES OF THE DEVICE FOR APPLYING ANTICORROSIVE COATINGS ON THE BODY ELEMENTS OF TRANSPORT AND TECHNOLOGICAL MACHINES

Grigoriev Alexander Viktorovich

master's student

Dyachkov Sergey Vladimirovich

candidate of Technical Sciences, Associate Professor of

dsv13.06@mail.ru

Solovyov Sergey Vladimirovich

doctor of Agricultural Sciences, AssociateProfessor

sergsol6800@yandex.ru

Abrosimov Alexander Gennadievich

candidate of Technical Sciences. Associate Professor

Michurinsk State Agrarian University

Michurinsk, Russia

Annotation. The article considers the results of experimental studies of the working body of the device for anti-corrosion treatment of hidden surfaces of transport and technological machines. As a result of the conducted experimental studies, the authors obtained dependences for determining the mass and volume flow rates of the anticorrosive liquid.

Key words: transport and technological machines, anti-corrosion treatment, nozzle, specific gravity of the washing flow.