АВТОМАТИЗИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ ОСВЕЩЕНИЕМ

Александр Сергеевич Седаков

преподаватель

easyicicle32@gmail.com

Брянский строительный колледж имени профессора Н.Е. Жуковского г. Брянск, Россия

Аннотация. В статье рассматривается одна из самых инновационных систем комплексного управления освещением, применяемой в коммерческих зданиях и крупных производственных объектах.

Ключевые слова: энергоэффективность, освещение, мониторинг, проектирование, управление освещением, система контроля.

По данным международного аналитического агентства Memoori, мировой рынок беспроводных систем управления освещением вырастет в среднем на 30%.

С точки зрения актуальности и технологии она не только сопоставима с аналогичными продуктами мирового лидера на рынке беспроводных систем управления освещением, но и стала разработкой, превосходящей их по многим параметрам.

В частности, модуль продукта совместим с осветительным оборудованием всех производителей, включая затемнение осветительного оборудования, ручное и автоматическое включение/ выключение, управление расписанием дня, недели, месяца и года, облачные сервисы и возможность управления из мобильных приложений.[1]

Простая и универсальная разработка позволяет эффективно управлять освещением в офисных зданиях, административных зданиях, промышленных объектах, торговых центрах и гостиницах.

Особенно при создании простых расписаний, сценариев и логических групп, это уже показало Энергоэффективность до 50%. Если вы добавите датчики присутствия или освещенности, это число увеличится до 80%.

При создании системы разработчики придерживались основного принципа создания простого решения plug-and-play, которое не требует от клиента или установщика каких-либо знаний в области программирования или настройки оборудования. Если вы подключите модуль и зарегистрируете его в облачном сервисе, он будет готов к использованию. Очевидно, что простые решения для конечных пользователей особенно необходимы на рынках автоматизации и диспетчеризации.[2]

Аппаратно-программная система ME6 сконфигурирована следующим образом:

- ME6-R: Беспроводной сетевой интерфейс для подключения к ME6Cloud через Интернет.
- ME6-NF: Узел управления беспроводным драйвером.

- МЕ6-D: Беспроводной драйвер для светильников мощностью 40-80 Вт.
- МЕ6-F: Беспроводной датчик освещенности.
- ME6-SW: Беспроводной переключатель.
- ME6Cloud: Облачная платформа. Основная система.
- ME6App: мобильное приложение для iOS и Android.[3]

Рисунок 1 - ME6-R — устройство сопряжения беспроводной сети с облаком ME6Cloud

Рисунок 2 - ME6-NF: беспроводной узел управления драйвером светильника

Существует множество бесплатных мобильных приложений для смартфонов на базе iOS и Android.Приложение автоматически синхронизируется с ME6Cloud, позволяя вам отслеживать вашу систему и управлять ею [4].

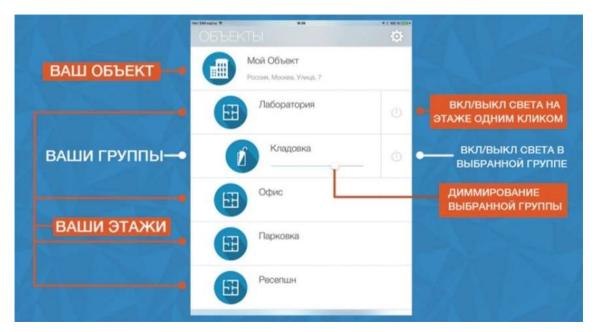


Рисунок 3 - Управление освещением с приложения ME6 под IOS

Запатентованная технология Flip-Mode позволяет управлять освещением даже в заблокированном (ждущем) состоянии.

Рисунок 4 - Облачная система управления освещением: Flip Mode режим Преимущества облачной системы управления освещением МЕ6.

- Его можно внедрить и эксплуатировать с низкими затратами.
- Облачная система управления освещением ME6 позволяет максимально просто модернизировать существующую систему освещения без необходимости в дополнительных кабел.

- Интуитивно понятный веб-интерфейс управления и настройки доступен 24 часа в сутки, 365 дней в году.
- Оборудование предоставляется в настроенном состоянии, готовое к использованию, и может быть установлено и сконфигурировано заказчиком на любом осветительном приборе.

Внедряя-вы можете продлить срок службы осветительного оборудования и электросетей.

- Вы можете узнать состояние системы освещения онлайн в режиме реального времени.[4]

Разработанная облачная система управления освещением - это освещение будущего, которое выводит все сектора освещения, такие как офисы и промышленные предприятия, на новый уровень, увеличивая заполняемость и предоставляя широкие возможности для адаптации освещения к потребностям конкретных объектов.

Список литературы:

- 1. Грунтович Н.В., Токочакова Н.В. Внедрение интеллектуальных компьютерных систем технического учета и управления потреблением ТЭР основа управления повышения энергетической эффективности промышленных потребителей. // Сборник материалов 12-го международного симпозиума «Технологии, оборудование, качество» в рамках Белорусского промышленного форума 19-22 мая 2009 г. Минск. 179 с.
- 2. Маркарянц Л.М., Безик В.А., Самородский П.А. Эффективность применения устройств защиты электрооборудования // Проблемы энергообеспечения, информатизации и автоматизации, безопасности и природопользования в АПК / под общей редакцией Маркарянц Л.М., Брянск: Изд-во БГАУ. 2014. С.
- 3. Федеральный закон "Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации" от 23.11.2009 N 261-Ф3.

4. Каталог продукции «световые технологии». 2019.

UDC 303.064

AUTOMATED LIGHTING CONTROL SYSTEM

Alexander S. Sedakov

Teacher

easyicicle32@gmail.com

Bryansk Construction College named after Professor N.E. Zhukovsky

Bryansk, Russia

Abstract. The article discusses one of the most innovative integrated lighting control systems used in commercial buildings and large industrial facilities.

Key words: energy efficiency, lighting, monitoring, design, lighting control, control system.

Статья поступила в редакцию 30.03.2023; одобрена после рецензирования 30.05.2022; принята к публикации 30.06.2023.

The article was submitted 30.03.2023; approved after reviewing 30.05.2022; accepted for publication 30.06.2023.