УДК 631. 1-15

ОСОБЕННОСТИ ВЛИЯНИЯ ОРГАНИЧЕСКОГО УДОБРЕНИЯ НА УРОЖАЙНОСТЬ ЯБЛОНИ В ИНТЕНСИВНОМ САДУ

Юлия Викторовна Гурьянова

доктор сельскохозяйственных наук, профессор

guryanova_70@mail.ru

Сергей Валерьевич Галушкин

магистрант

galushkin_sergey@list.ru

Антон Павлович Зацепин

студент

antonormal15@gmail.com

Мичуринский государственный аграрный университет

г. Мичуринск, Россия

Аннотация. В статье показано, что при внесении органического удобрения при норме 40 т увеличивало урожайность у всех изучаемых сортов, как летнего, так и зимнего сроков созревания. Причем при внесении 10 т/га и 25 т/га существенных различий не отмечалось. Соответственно контрольный вариант, без внесения, имел очень низкие показатели.

Ключевые слова: яблоня, урожайность, органическое удобрение.

Систематическое применение органических удобрений способствует: накоплению гумуса, улучшает физико-химические свойства почвы, увеличивает запас питательных веществ, понижает кислотность, повышает содержание поглощенных оснований, поглотительную способность и буферность, влагоемкость, обогащает почву микрофлорой, усиливает ее биологическую активность и выделение углекислоты, уменьшает сопротивление почвы при механической обработке, создает оптимальные условия для минерального питания растений, повышает устойчивость растений при неблагоприятных погодных условиях[1,2,3,4].

Урожай плодов является важной составляющей общей биологической продуктивности деревьев. Для характеристики урожая растений и определения причин изменения их продуктивности изучаются различные компоненты продуктивности. Основными компонентами продуктивности являются величина ежегодных урожаев, средняя масса плодов, количество плодов и плодовая нагрузка на пункт плодоношения дерева [3,5].

Методика проведения исследований составлена с учетом «Программы и методики сортоизучения плодовых и ягодных культур» (Орел 1999). Нами разных проводились исследования ПО влиянию норм аэрированного органического удобрения в дозе 10 т/га; 25 т/га; 40 т/га в плодоносящем саду. [1]. Сад интенсивного типа, заложенный в 2007 году сортами зимнего и летнего срока созревания, в том числе Богатырь, Синап орловский, Мелба, Мечта, привитых на полукарликовый подвой 54-118.Схема посадки 6х3 м. Нами проводилось определение урожайности деревьев яблони при использовании разных норм органического удобрения. Статистическую обработку результатов исследований проводили методом дисперсионного анализа. Регрессионный анализ проводили в соответствии с офисным приложением Excel.

Результаты исследований

Вопросы внесения органического удобрения в молодые сады еще не достаточно изучен. Так как реакция деревьев яблони, как известно, зависит от почвенных условий и биологических особенностей возделываемых сортов

Азотный режим питания оказывает глубокое влияние на весь организм растения. Однако, азот имеет зависимость действия с другими элементами, такими как фосфор [3,4].

Нами было изучено влияние внесения разных норм органического удобрения на урожайность яблони (таблица 1).

Таблица 1 Урожайность яблони при внесении разных норм органического субстрата (2020-2022 г. г.).

Варианты	Урожайность, т/га			
опыта	Мечта	Мелба	Богатырь	Синап
				орловский
Контроль	180,7	173,1	122,3	183,3
10 т/га	523,0	563,4	663,7	654,3
25 т/га	555,3	582,4	632,7	645,9
40 т/га	2035,4	1935,3	2098,6	1922,2
HCP ₀₅	15,8	19,5	25,6	24,3

Результаты исследований показали, что внесение органического удобрения способствовало увеличению урожайности при норме 40 т/га у всех изучаемых сортов, достоверных различий при внесении 10 т/га и 25 т/га отмечено не было, но у зимних сортов Богатырь и Синап орловский урожайность отмечалась выше, так как плоды намного крупнее, чем у летних сортов Мелба и Мечта.

Список литературы:

1. Ю.В., Рязанова В.В., Марченко Ю.О. Влияние Гурьянова яблок некорневых подкормок на урожай И качество Вестник Мичуринского государственного аграрного университета. 2013. № 4. С. 19-21.

- 2. Гурьянова Ю.В., Андреева Н.В., Десятникова Е.В Влияние абиотических факторов на урожайность и качество плодов яблони. // Вестник Мичуринского государственного аграрного университета. 2012. № 1-1. С. 43-45.
- 3. Исаева И.С. Компоненты продуктивности и оптимальность их параметров у яблони в связи с селекцией на урожайность // Биологический потенциал садовых растений и пути его реализации: Материалы Межд. конф. 19-22 июля 1999 года. М. 2000. С. 47-58.
- 4. Применение органических удобрений в интенсивном земледелии: рекомендации / И. Р. Вильдфлуш и др.. / Горки: БГСХА. 2015. 50 с.
- 5. Chalker-Scott L. Environmental significance of anthocyanins in plant stress responses // Photochemistry and Photobiology. 1999. V P.1-9.

UDC 631. 1-15

FEATURES OF THE EFFECT OF ORGANIC FERTILIZER ON THE YIELD OF APPLE TREES IN AN INTENSIVE GARDEN

Yulia V. Guryanova

doctor of agricultural sciences, professor guryanova_70@mail.ru

Sergey V. Galushkin

master student galushkin_sergey@list.ru

Anton P. Zatsepin

student

antonormal15@gmail.com
Michurinsk State Agrarian University
Michurinsk, Russia

Наука и Образование. Том 7. № 2. 2024 / Мастерская публикаций

Annotation. The article shows that when applying organic fertilizer at a rate of 40 tons, it increased the yield of all studied varieties, both summer and winter maturation periods. Moreover, when applying 10 t/ha and 25 t/ha, there were no significant differences. Accordingly, the control version, without introduction, had very low indicators.

Keywords: apple tree, yield, organic fertilizer.

Статья поступила в редакцию 03.05.2024; одобрена после рецензирования 13.06.2024; принята к публикации 27.06.2024.

The article was submitted 03.05.2024; approved after reviewing 13.06.2024; accepted for publication 27.06.2024.